login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of 2's between n-th 3 and (n+1)st 3 in A026600.
2

%I #16 Apr 17 2019 03:18:09

%S 1,0,2,0,2,0,2,1,1,0,2,0,2,1,1,1,0,1,2,1,1,1,0,2,0,2,1,0,2,0,2,1,1,1,

%T 0,1,2,1,1,1,0,2,0,2,1,1,0,2,0,2,0,2,1,0,2,1,1,1,0,2,0,2,1,1,0,2,0,2,

%U 0,2,1,1,0,2,0,2,1,1,1,0,2,0,2,0,2,1,1,1,0,1

%N Number of 2's between n-th 3 and (n+1)st 3 in A026600.

%C (a(n)) is a morphic sequence, i.e., a letter-to-letter projection of a fixed point of a morphism. See A026608 and A026610. - _Michel Dekking_, Apr 16 2019

%C The frequencies of 0's, 1's and 2's in (a(n)) are 4/13, 5/13 and 4/13. See A026610. - _Michel Dekking_, Apr 16 2019

%H Michael De Vlieger, <a href="/A026613/b026613.txt">Table of n, a(n) for n = 1..19682</a>

%t Rest@ Map[Count[#, 2] &, DeleteCases[SplitBy[#, # == 3 &], _?(# == {3} &)]] &@ Nest[Flatten[# /. {1 -> {1, 2, 3}, 2 -> {2, 3, 1}, 3 -> {3, 1, 2}}] &, {1}, 6] (* _Michael De Vlieger_, Apr 16 2019, after _Robert G. Wilson v_ at A026600 *)

%Y Cf. A026600, A026608, A026610.

%K nonn

%O 1,3

%A _Clark Kimberling_