login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026527
a(n) = T(2*n, n-2), where T is given by A026519.
23
1, 3, 14, 55, 231, 952, 3976, 16614, 69750, 293557, 1238952, 5240599, 22212645, 94318875, 401143304, 1708558480, 7286677479, 31113264579, 132994055090, 569048532612, 2437033824302, 10445705817063, 44807461337160, 192342179361800, 826205908069555, 3551172735996756, 15272395383833658
OFFSET
2,2
LINKS
FORMULA
a(n) = A026519(2*n, n-2).
a(n) = A026536(2*n, n-2).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *)
a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n, n-2] ];
Table[a[n], {n, 2, 40}] (* G. C. Greubel, Dec 20 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k): # T = A026552
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+1)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
[T(2*n, n-2) for n in (2..40)] # G. C. Greubel, Dec 20 2021
KEYWORD
nonn
EXTENSIONS
Terms a(20) onward added by G. C. Greubel, Dec 20 2021
STATUS
approved