login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026475 a(1)=1, a(2)=3, otherwise a(n) = least positive integer > a(n-1) and not a(i) + a(j) + a(k) for 1 <= i < j < k <= n. 1
1, 3, 4, 5, 6, 7, 19, 20, 21, 22, 36, 37, 38, 39, 53, 54, 55, 69, 70, 71, 72, 86, 87, 88, 102, 103, 104, 105, 119, 120, 121, 135, 136, 137, 138, 152, 153, 154, 168, 169, 170, 171, 185, 186, 187, 201, 202, 203, 204, 218, 219, 220, 234, 235, 236, 237, 251, 252, 253 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Without specifying a(2)=3, a(2) would be 2 and sequence would be A026471. - Robert Israel, Aug 27 2018

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).

FORMULA

a(n+7) = a(n) + 33 for n >= 8. - Robert Israel, Aug 27 2018

From Colin Barker, Oct 10 2019: (Start)

G.f.: x*(1 + 2*x + x^2 + x^3 + x^4 + x^5 + 12*x^6 - x^8 + 13*x^10 - 11*x^13 + 13*x^14) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).

a(n) = a(n-1) + a(n-7) - a(n-8) for n>15.

(End)

MAPLE

1, 3, 4, 5, 6, 7, 19, seq(op([20, 21, 22, 36, 37, 38, 39]+k*[33$7]), k=0..10); # Robert Israel, Aug 30 2018

PROG

(PARI) Vec(x*(1 + 2*x + x^2 + x^3 + x^4 + x^5 + 12*x^6 - x^8 + 13*x^10 - 11*x^13 + 13*x^14) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^40)) \\ Colin Barker, Oct 10 2019

CROSSREFS

Cf. A026471.

Sequence in context: A330373 A072599 A095138 * A101747 A134338 A084919

Adjacent sequences:  A026472 A026473 A026474 * A026476 A026477 A026478

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Sep 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 26 11:13 EST 2020. Contains 331279 sequences. (Running on oeis4.)