login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ordered trees with n edges and having no branches of length 1.
3

%I #51 Mar 03 2024 14:50:30

%S 1,0,1,1,2,3,6,11,22,43,87,176,362,748,1560,3270,6897,14613,31104,

%T 66459,142518,306603,661572,1431363,3104619,6749390,14704387,32098729,

%U 70198656,153785705,337443785,741551614,1631910081,3596083215

%N Number of ordered trees with n edges and having no branches of length 1.

%C Hankel transform is A166446(n+2). - _Paul Barry_, Mar 29 2011

%H Vincenzo Librandi, <a href="/A026418/b026418.txt">Table of n, a(n) for n = 0..1000</a>

%H Jean-Luc Baril and Sergey Kirgizov, <a href="https://arxiv.org/abs/2110.02831">Lattice paths with a first return decomposition constrained by the maximal height of a pattern</a>, arXiv:2110.02831 [math.CO], 2021.

%H Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, <a href="http://math.colgate.edu/~integers/t46/t46.Abstract.html">Motzkin paths with a restricted first return decomposition</a>, Integers (2019) Vol. 19, A46.

%H Jean-Luc Baril and José Luis Ramírez, <a href="https://arxiv.org/abs/2302.12741">Descent distribution on Catalan words avoiding ordered pairs of Relations</a>, arXiv:2302.12741 [math.CO], 2023.

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry3/barry93.html">Continued fractions and transformations of integer sequences</a>, JIS 12 (2009) 09.7.6.

%H Ricardo Gómez Aíza, <a href="https://arxiv.org/abs/2402.16111">Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis</a>, arXiv:2402.16111 [math.CO], 2024. See p. 21.

%H John Riordan, <a href="http://dx.doi.org/10.1016/S0097-3165(75)80010-0">Enumeration of plane trees by branches and endpoints</a>, J. Comb. Theory (A) 19, 1975, 214-222.

%F a(n) = sum(binomial(n-2-j, j)*m{j), j=0..floor(n/2)-1), where m(j)=sum(binomial(n, 2k)*binomial(2k, k)/(k+1), k=0..floor(n/2)) is the Motzkin number A001006(j).

%F G.f.: g=g(z) satisfies z^2g^2-(1-z+z^2)g+1-z+z^2=0

%F G.f.: [1,1,2,3,...] has g.f. 1/(1-x-x^2-x^4/(1-x-x^2-x^4/(1-x-x^2-x^4/(1... (continued fraction). - _Paul Barry_, Jul 16 2009

%F G.f.: c(x^2/(1-x+x^2)) where c(x) is the g.f. of A000108.

%F G.f.: g(x)=1/(1-x^2/(1-x+x^2-x^2*g(x)))=1/(1-x^2/(1-x+x^2-x^2/(1-x^2/(1-x+x^2-x^2/(1-... (continued fraction). - _Paul Barry_, Mar 29 2011

%F D-finite with recurrence (n+2)*a(n) +(-2*n-1)*a(n-1) +(-n+1)*a(n-2) +(2*n-5)*a(n-3) +3*(-n+4)*a(n-4)=0. - _R. J. Mathar_, Nov 24 2012

%F G.f.: (1 - x + x^2 - sqrt(1- 2*x - x^2 + 2*x^3 - 3*x^4))/(2*x^2). - _Sergei N. Gladkovskii_, Oct 04 2013

%F a(n) ~ sqrt(26+2*sqrt(13)) * ((1+sqrt(13))/2)^n / (4 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Feb 12 2014

%e a(6)=6 because we have the following six ordered trees with 6 edges and no branches of length 1 (hanging from the root): (i) a path of length 6, (ii) a path of length 2 and a path of length 4, (iii) two paths of length 3, (iv) a path of length 4 and a path of length 2, (v) three paths of length 2 and (vi) a path of length 2 at the end of which two paths of length 2 are hanging.

%t CoefficientList[Series[(1-x+x^2-Sqrt[1-2*x-x^2+2*x^3-3*x^4])/(2*x^2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 12 2014 *)

%Y Cf. A001006.

%K nonn

%O 0,5

%A _Emeric Deutsch_, Dec 04 2003