Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #62 Mar 03 2024 14:30:51
%S 1,6,30,144,685,3258,15533,74280,356283,1713690,8263596,39938616,
%T 193419915,938430990,4560542550,22195961280,108171753355,527816696850,
%U 2578310320610,12607504827600,61706212037295,302275142049870,1481908332595625,7270432009471224
%N a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=2; also a(n) = T(2n,n-1).
%C Number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis) from (0,0) to (2n+2,0), with exactly one peak at an even level. E.g., a(2)=6 because we have UUDDH, HUUDD, UDUUDD, UUDDUD, UUDHD and UHUDD. - _Emeric Deutsch_, Dec 28 2003
%C Number of left steps in all skew Dyck paths of semilength n+1. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. Example: a(2)=6 because in the 10 (=A002212(3)) skew Dyck paths of semilength 3 ( namely UDUUDL, UUUDLD, UUDUDL, UUUDDL, UUUDLL and five Dyck paths that have no left steps) we have altogether 6 left steps. - _Emeric Deutsch_, Aug 05 2007
%C From _Gary W. Adamson_, May 17 2009: (Start)
%C Equals A026378 (1, 4, 17, 75, ...) convolved with A007317 (1, 2, 5, 15, 51, ...).
%C Equals A081671 (1, 3, 11, 45, ...) convolved with A002212 (1, 3, 10, 36, 137, ...).
%C (End)
%H Vincenzo Librandi, <a href="/A026376/b026376.txt">Table of n, a(n) for n = 1..200</a>
%H Emeric Deutsch, Emanuele Munarini, and Simone Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
%H Ricardo Gómez Aíza, <a href="https://arxiv.org/abs/2402.16111">Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis</a>, arXiv:2402.16111 [math.CO], 2024. See p. 18.
%H Toufik Mansour and José Luis Ramírez, <a href="https://doi.org/10.33039/ami.2022.01.001">Enumeration of Fuss-skew paths</a>, Ann. Math. Inform. (2022) Vol. 55, 125-136. See p. 129.
%F E.g.f.: exp(3x)*I_1(2x), where I_1 is Bessel function. - _Michael Somos_, Sep 09 2002
%F G.f.: (1 - 3*z - t)/(2*z*t) where t = sqrt(1-6*z+5*z^2). - _Emeric Deutsch_, May 25 2003
%F a(n) = [t^(n+1)](1+3t+t^2)^n. a := n -> Sum_{j=ceiling((n+1)/2)..n} 3^(2j-n-1)*binomial(n, j)*binomial(j, n+1-j). - _Emeric Deutsch_, Jan 30 2004
%F a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2k, k+1). - _Paul Barry_, Sep 20 2004
%F a(n) = n*A002212(n). - _Emeric Deutsch_, Aug 05 2007
%F D-finite with recurrence (n+1)*a(n) - 9*n*a(n-1) + (23*n-27)*a(n-2) + 15*(-n+2)*a(n-3) = 0. - _R. J. Mathar_, Dec 02 2012
%F a(n) ~ 5^(n+1/2) / (2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Feb 13 2014
%F a(n) = n*hypergeometric([1, 3/2, 1-n],[1, 3],-4). - _Peter Luschny_, Sep 16 2014
%F a(n) = GegenbauerC(n-1, -n, -3/2). - _Peter Luschny_, May 09 2016
%p a := n -> simplify(GegenbauerC(n-1, -n, -3/2)):
%p seq(a(n), n=1..24); # _Peter Luschny_, May 09 2016
%t Rest[CoefficientList[Series[(1-3*x-Sqrt[1-6*x+5*x^2])/(2*x*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Feb 13 2014 *)
%o (PARI) a(n)=if(n<0,0,polcoeff((1+3*x+x^2)^n,n-1))
%o (Sage)
%o A026376 = lambda n : n*hypergeometric([1, 3/2, 1-n], [1, 3], -4)
%o [round(A026376(n).n(100)) for n in (1..24)] # _Peter Luschny_, Sep 16 2014
%o (Sage) # Recurrence:
%o def A026376():
%o x, y, n = 1, 1, 1
%o while True:
%o x, y = y, ((6*n + 3)*y - (5*n - 5)*x) / (n + 2)
%o yield n*x
%o n += 1
%o a = A026376()
%o [next(a) for i in (1..24)] # _Peter Luschny_, Sep 16 2014
%Y Cf. A006318, A002212, A081671, A007317, A026378.
%K nonn
%O 1,2
%A _Clark Kimberling_