login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A000522(n) - 2.
4

%I #37 Apr 26 2019 03:11:01

%S 0,3,14,63,324,1955,13698,109599,986408,9864099,108505110,1302061343,

%T 16926797484,236975164803,3554627472074,56874039553215,

%U 966858672404688,17403456103284419,330665665962403998,6613313319248079999,138879579704209680020,3055350753492612960483

%N a(n) = A000522(n) - 2.

%C Number of operations of addition and multiplication needed to evaluate a determinant of order n by cofactor expansion.

%H Alois P. Heinz, <a href="/A026243/b026243.txt">Table of n, a(n) for n = 1..170</a>

%H C. Dubbs and D. Siegel, <a href="http://www.jstor.org/stable/2686317">Computing determinants</a>, College Math. J., 18 (1987), 48-49.

%H A. R. Pargeter, <a href="http://www.jstor.org/stable/3618385">The vanishing coffee morning</a>, Math. Gaz., 76 (1992), 386-387.

%H P. G. Sawtelle, <a href="http://www.jstor.org/stable/2689455">The ubiquitous e</a>, Math. Mag., 49 (1976), 244-245. [_N. J. A. Sloane_, Jan 29 2009]

%F a(n) = n*(a(n-1)+2)-1 for n>1, a(1) = 0. - _Alois P. Heinz_, May 25 2012

%F Conjecture: a(n) +(-n-2)*a(n-1) +(2*n-1)*a(n-2) +(-n+2)*a(n-3)=0. - _R. J. Mathar_, Jun 23 2013 [Confirmed by _Altug Alkan_, May 18 2018]

%F a(n) = floor(e*n!) - 2. - _Bernard Schott_, Apr 21 2019

%e To calculate a determinant of order 3:

%e |a b c| |e f| |d f| |d e|

%e D = |d e f| = a * |h i| - b * |g i| + c * |g h| =

%e |g h i|

%e = a * (e*i - f*h) - b * (d*i - f*g) + c * (d*h - e*g).

%e There are 9 multiplications * and 5 additions (+ or -), so 14 operations and a(3) = 14. - _Bernard Schott_, Apr 21 2019

%p a:= proc(n) a(n):= n*(a(n-1)+2)-1: end: a(1):= 0:

%p seq (a(n), n=1..30); # _Alois P. Heinz_, May 25 2012

%t Table[E*Gamma[n+1, 1] - 2, {n, 1, 30}] (* _Jean-François Alcover_, May 18 2018 *)

%Y Cf. A000522, A007526. Equals A033312 + A038156.

%Y Cf. A001339.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, based on a message from a correspondent who wishes to remain anonymous, Dec 21 2003