OFFSET
2,1
FORMULA
G.f.: (-1 + (1-z)^2 * M^2), with M the g.f. of the Motzkin numbers (A001006). [corrected by Vaclav Kotesovec, Sep 17 2019]
Conjecture: (n+4)*a(n) +(-3*n-5)*a(n-1) +(-n-6)*a(n-2) +3*(n-3)*a(n-3)=0. - R. J. Mathar, Jun 23 2013
a(n) ~ 4 * 3^(n + 1/2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 17 2019
a(n) = 2*Sum_{m=1..n/2} C(2*m+1,m)*C(n-1,2*m-1)/(m+2). - Vladimir Kruchinin, Jan 24 2022
MATHEMATICA
Drop[CoefficientList[Series[-1 + (1 - x)^2*(-1 + x + Sqrt[1 - 2*x - 3*x^2])^2 / (4*x^4), {x, 0, 30}], x], 2] (* Vaclav Kotesovec, Sep 17 2019 *)
PROG
(Maxima)
a(n):=2*sum((binomial(2*m+1, m)*binomial(n-1, 2*m-1))/(m+2), m, 1, n/2); /* Vladimir Kruchinin, Jan 24 2022 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved