login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026122
a(n) is the number of (s(0),s(1),...,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, s(n) = 1, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n), where T is the array in A026120.
3
2, 4, 11, 28, 74, 196, 525, 1416, 3846, 10508, 28864, 79664, 220818, 614460, 1715874, 4807008, 13506534, 38052972, 107477319, 304261404, 863188662, 2453737132, 6988033949, 19935797080, 56966012730, 163026450132, 467219178549, 1340810339036
OFFSET
2,1
FORMULA
G.f.: (-1 + (1-z)^2 * M^2), with M the g.f. of the Motzkin numbers (A001006). [corrected by Vaclav Kotesovec, Sep 17 2019]
Conjecture: (n+4)*a(n) +(-3*n-5)*a(n-1) +(-n-6)*a(n-2) +3*(n-3)*a(n-3)=0. - R. J. Mathar, Jun 23 2013
a(n) ~ 4 * 3^(n + 1/2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 17 2019
a(n) = 2*Sum_{m=1..n/2} C(2*m+1,m)*C(n-1,2*m-1)/(m+2). - Vladimir Kruchinin, Jan 24 2022
MATHEMATICA
Drop[CoefficientList[Series[-1 + (1 - x)^2*(-1 + x + Sqrt[1 - 2*x - 3*x^2])^2 / (4*x^4), {x, 0, 30}], x], 2] (* Vaclav Kotesovec, Sep 17 2019 *)
PROG
(Maxima)
a(n):=2*sum((binomial(2*m+1, m)*binomial(n-1, 2*m-1))/(m+2), m, 1, n/2); /* Vladimir Kruchinin, Jan 24 2022 */
CROSSREFS
First differences of A026107.
Sequence in context: A202085 A122423 A099016 * A108629 A007048 A148132
KEYWORD
nonn
STATUS
approved