login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (d(n)-r(n))/2, where d = A026046 and r is the periodic sequence with fundamental period (0,1,0,1).
0

%I #8 Jun 13 2015 00:49:05

%S 38,52,72,97,130,170,220,279,350,432,528,637,762,902,1060,1235,1430,

%T 1644,1880,2137,2418,2722,3052,3407,3790,4200,4640,5109,5610,6142,

%U 6708,7307,7942,8612,9320,10065,10850,11674,12540,13447,14398,15392,16432,17517,18650,19830,21060,22339,23670

%N a(n) = (d(n)-r(n))/2, where d = A026046 and r is the periodic sequence with fundamental period (0,1,0,1).

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1).

%F a(n)=(n + 6)*(n^2 + 6*n + 38)/6 - 0.5*sin(n*Pi/2)^2 [From _Richard Choulet_, Dec 13 2008]

%F G.f. x^6*( 38-62*x-8*x^2+61*x^3-27*x^4 ) / ( (1+x)*(x-1)^4 ). - _R. J. Mathar_, Jun 22 2013

%K nonn

%O 6,1

%A _Clark Kimberling_