login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = dot_product(1,2,...,n)*(5,6,...,n,1,2,3,4).
4

%I #23 Sep 08 2022 08:44:49

%S 45,67,98,140,195,265,352,458,585,735,910,1112,1343,1605,1900,2230,

%T 2597,3003,3450,3940,4475,5057,5688,6370,7105,7895,8742,9648,10615,

%U 11645,12740,13902,15133,16435,17810,19260,20787,22393,24080,25850,27705

%N a(n) = dot_product(1,2,...,n)*(5,6,...,n,1,2,3,4).

%H Vincenzo Librandi, <a href="/A026043/b026043.txt">Table of n, a(n) for n = 5..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = n(2n^2 - 9n + 49)/6 (n >= 5). - _Emeric Deutsch_, Nov 29 2006

%F G.f.: x^5*(45 - 113*x + 100*x^2 - 30*x^3)/(1 - x)^4. - _Colin Barker_, Sep 17 2012

%p a:=n->n*(2*n^2-9*n+49)/6: seq(a(n),n=5..45); # _Emeric Deutsch_, Nov 29 2006

%t Table[Range[n].RotateLeft[Range[n],4], {n,5,51}] (* _T. D. Noe_, Nov 07 2006 *)

%t CoefficientList[Series[(45 - 113 x + 100 x^2 - 30 x^3)/(1 - x)^4, {x, 0, 60}], x] (* _Vincenzo Librandi_, Oct 17 2013 *)

%o (Magma) [n*(2*n^2-9*n+49)/6: n in [5..60]]; // _Vincenzo Librandi_, Oct 17 2013

%Y Column 4 of triangle A094414.

%K nonn,easy

%O 5,1

%A _Clark Kimberling_

%E Corrected by _T. D. Noe_, Nov 07 2006