login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025996 Expansion of 1/((1-2*x)*(1-5*x)*(1-7*x)*(1-12*x)). 1
1, 26, 449, 6550, 87765, 1122522, 13981657, 171489758, 2084497085, 25203559810, 303786156609, 3654919330374, 43925837020261, 527579714133290, 6334254431345705, 76034189070980398, 912572474428695693 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Iain Fox, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (26,-227,778,-840).

FORMULA

a(n) = -4*2^n/75 + 125*5^n/42 - 343*7^n/50 + 864*12^n/175. - R. J. Mathar, Jun 20 2013

a(n) = 26*a(n-1) - 227*a(n-2) + 778*a(n-3) - 840*a(n-4). - Iain Fox, Oct 19 2018

E.g.f.: (-56*exp(2*x) + 3125*exp(5*x) - 7203*exp(7*x) + 5184*exp(12*x)) / 1050. - G. C. Greubel, Oct 19 2018

MAPLE

seq(coeff(series(((1-2*x)*(1-5*x)*(1-7*x)*(1-12*x))^(-1), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 19 2018

MATHEMATICA

Table[(-7*2^(3+n) +5^(5+n) -3*7^(4+n) +3*12^(3+n))/1050, {n, 0, 30}] (* G. C. Greubel, Oct 19 2018 *)

LinearRecurrence[{26, -227, 778, -840}, {1, 26, 449, 6550}, 20] (* Harvey P. Dale, May 28 2019 *)

PROG

(PARI) first(n) = Vec(1/((1-2*x)*(1-5*x)*(1-7*x)*(1-12*x)) + O(x^n)) \\ Iain Fox, Oct 19 2018

(PARI) a(n) = -4*2^n/75 + 125*5^n/42 - 343*7^n/50 + 864*12^n/175 \\ Iain Fox, Oct 19 2018

(MAGMA) [(-7*2^(3+n) +5^(5+n) -3*7^(4+n) +3*12^(3+n))/1050: n in [0..30]]; // G. C. Greubel, Oct 19 2018

(GAP) a:=[1, 26, 449, 6550];; for n in [5..20] do a[n]:=26*a[n-1]-227*a[n-2]+778*a[n-3]-840*a[n-4]; od; a; # Muniru A Asiru, Oct 19 2018

CROSSREFS

Sequence in context: A028042 A023956 A025981 * A023540 A025979 A020970

Adjacent sequences:  A025993 A025994 A025995 * A025997 A025998 A025999

KEYWORD

easy,nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 16:48 EDT 2022. Contains 354110 sequences. (Running on oeis4.)