Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Nov 20 2022 08:35:18
%S 1,0,0,0,0,1,0,0,1,1,1,0,0,1,1,1,1,1,2,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,
%T 3,3,3,3,3,3,4,4,4,4,4,5,4,4,5,5,6,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,
%U 9,9,9,9,10,10,10,10,10,11
%N Expansion of 1/((1-x^5)*(1-x^8)*(1-x^9)).
%C a(n) is the number of partitions of n into parts 5, 8, and 9. - _Joerg Arndt_, Nov 20 2022
%H G. C. Greubel, <a href="/A025887/b025887.txt">Table of n, a(n) for n = 0..5000</a>
%H <a href="/index/Rec#order_22">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1,0,0,1,1,0,0,0,-1,-1,0,0,-1,0,0,0,0,1).
%F a(n) = a(n-5) + a(n-8) + a(n-9) - a(n-13) - a(n-14) - a(n-17) + a(n-22). - _G. C. Greubel_, Nov 19 2022
%t CoefficientList[Series[1/((1-x^5)(1-x^8)(1-x^9)), {x,0,80}], x] (* _G. C. Greubel_, Nov 19 2022 *)
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 80); Coefficients(R!( 1/((1-x^5)*(1-x^8)*(1-x^9)) )); // _G. C. Greubel_, Nov 19 2022
%o (SageMath)
%o def A025887_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( 1/((1-x^5)*(1-x^8)*(1-x^9)) ).list()
%o A025887_list(80) # _G. C. Greubel_, Nov 19 2022
%Y Cf. A025888, A025889, A025890.
%K nonn,easy
%O 0,19
%A _N. J. A. Sloane_