%I #14 Nov 19 2022 02:16:53
%S 1,0,0,0,0,1,0,1,0,0,1,1,1,0,1,1,1,1,1,1,1,2,2,1,1,2,2,2,2,2,2,2,3,3,
%T 2,3,3,3,3,3,4,3,4,4,4,4,4,5,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,8,8,8,
%U 8,8,9,9,9,9,9,10,10,11,10
%N Expansion of 1/((1-x^5)*(1-x^7)*(1-x^11)).
%C a(n) is the number of partitions of n into parts 5, 7, and 11. - _Joerg Arndt_, Nov 19 2022
%H G. C. Greubel, <a href="/A025885/b025885.txt">Table of n, a(n) for n = 0..5000</a>
%H <a href="/index/Rec#order_23">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1,0,1,0,0,0,1,-1,0,0,0,-1,0,-1,0,0,0,0,1).
%t CoefficientList[Series[1/((1-x^5)(1-x^7)(1-x^11)),{x,0,80}],x] (* _Harvey P. Dale_, Oct 14 2011 *)
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 90); Coefficients(R!( 1/((1-x^5)*(1-x^7)*(1-x^11)) )); // _G. C. Greubel_, Nov 18 2022
%o (SageMath)
%o def A025885_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( 1/((1-x^5)*(1-x^7)*(1-x^11)) ).list()
%o A025885_list(90) # _G. C. Greubel_, Nov 18 2022
%Y Cf. A025882, A025883, A025884, A025886.
%K nonn,easy
%O 0,22
%A _N. J. A. Sloane_