Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 19 2022 02:16:53
%S 1,0,0,0,0,1,0,1,0,0,1,1,1,0,1,1,1,1,1,1,1,2,2,1,1,2,2,2,2,2,2,2,3,3,
%T 2,3,3,3,3,3,4,3,4,4,4,4,4,5,4,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,8,8,8,
%U 8,8,9,9,9,9,9,10,10,11,10
%N Expansion of 1/((1-x^5)*(1-x^7)*(1-x^11)).
%C a(n) is the number of partitions of n into parts 5, 7, and 11. - _Joerg Arndt_, Nov 19 2022
%H G. C. Greubel, <a href="/A025885/b025885.txt">Table of n, a(n) for n = 0..5000</a>
%H <a href="/index/Rec#order_23">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1,0,1,0,0,0,1,-1,0,0,0,-1,0,-1,0,0,0,0,1).
%t CoefficientList[Series[1/((1-x^5)(1-x^7)(1-x^11)),{x,0,80}],x] (* _Harvey P. Dale_, Oct 14 2011 *)
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 90); Coefficients(R!( 1/((1-x^5)*(1-x^7)*(1-x^11)) )); // _G. C. Greubel_, Nov 18 2022
%o (SageMath)
%o def A025885_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( 1/((1-x^5)*(1-x^7)*(1-x^11)) ).list()
%o A025885_list(90) # _G. C. Greubel_, Nov 18 2022
%Y Cf. A025882, A025883, A025884, A025886.
%K nonn,easy
%O 0,22
%A _N. J. A. Sloane_