login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)).
7

%I #47 Sep 28 2022 16:41:41

%S 1,0,1,1,1,2,2,2,3,3,4,4,5,5,6,7,7,8,9,9,11,11,12,13,14,15,16,17,18,

%T 19,21,21,23,24,25,27,28,29,31,32,34,35,37,38,40,42,43,45,47,48,51,52,

%U 54,56,58,60,62,64,66,68,71,72,75,77,79,82,84,86,89,91,94,96,99,101,104

%N Expansion of 1/((1-x^2)*(1-x^3)*(1-x^5)).

%C a(n) is the number of ways to pay n dollars with coins of two, three and five dollars. E.g., a(0)=1 because there is one way to pay: with no coin; a(1)=0 no possibility; a(2)=1 (2=1*2); a(3)=1 (3=1*3); a(4)=1 (4=2*2) a(5)=2 (5=3+2=1*5) ... - _Richard Choulet_, Jan 20 2008

%C a(n) is the number of partitions of n into parts which are 2, 3, or 5 (inclusive or). a(0)=1 by definition. See the preceding comment by R. Choulet. - _Wolfdieter Lang_, Mar 15 2012

%H Alois P. Heinz, <a href="/A025795/b025795.txt">Table of n, a(n) for n = 0..10000</a>

%H M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Janjic/janjic63.html">On Linear Recurrence Equations Arising from Compositions of Positive Integers</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,0,0,0,-1,-1,0,1).

%F G.f.: 1/((1-x^2)(1-x^3)(1-x^5)).

%F Let [b(1); b(2); ...; b(p)] denote a periodic sequence: e.g., [0; 1] defines the sequence c such that c(0)=c(2)=...=c(2*k)=0 and c(1)=c(3)=...=c(2*k+1)=1. Then a(n)=0.25*[0; 1] - (1/3)*[1; 0; 0] + (1/5)*[0; 1; 1; 0; 3] + ((n+1)*(n+2)/60) + (7*(n+1)/60). - _Richard Choulet_, Jan 20 2008

%F If ||A|| is the nearest number to A (A not a half-integer) we also have a(n) = ||((n+1)*(n+9)/60) + (1/5)[0; 1; 1; 0; 3]. - _Richard Choulet_, Jan 20 2008

%F a(n) = 77/360 + 7*(n+1)/60 + (n+2)*(n+1)/60 + (-1)^n/8 - (2/9)*cos(2*(n+2)*Pi/3) + (4/(5*sqrt(5)+25))*cos(2*n*Pi/5) - (4/(5*sqrt(5)-25))*cos(4*n*Pi/5). - _Richard Choulet_, Jan 20 2008

%F Euler transform of length 5 sequence [0, 1, 1, 0, 1]. - _Michael Somos_, Feb 05 2008

%F a(n) = a(-10-n) for all n in Z. - _Michael Somos_, Feb 25 2008

%F a(n) - a(n-2) = A008676(n). a(n) - a(n-5) = A103221(n) = A008615(n+2). A078495(n) = 2^(a(n-7) + a(n-9)) * 3^a(n-8) for all n in Z. - _Michael Somos_, Nov 17 2017, corrected Jun 23 2021

%F a(n)-a(n-3) = A008616(n). - _R. J. Mathar_, Jun 23 2021

%e G.f. = 1 + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ...

%t a[ n_] := Quotient[n^2 + 10 n + 1 - 13 Mod[n, 2], 60] + 1; (* _Michael Somos_, Nov 17 2017 *)

%o (PARI) {a(n) = (n^2 + 10*n + 1 - n%2 * 13) \60 + 1} /* _Michael Somos_, Feb 05 2008 */

%Y Cf. A008676, A078495, A103221.

%K nonn,easy

%O 0,6

%A _N. J. A. Sloane_