

A025781


Expansion of 1/((1x)(1x^5)(1x^12)).


0



1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16, 17, 18, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

Number of partitions of n into parts 1, 5, and 12. [Joerg Arndt, Mar 18 2013]
Up to and including a(21) this is the same as the expansion of product_{k>=1} 1/(1x^(k*(3*k1)/2))), which appears as a convolution factor in A095699.  R. J. Mathar, Mar 18 2013


LINKS

Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1).


FORMULA

a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=2, a(6)=2, a(7)=2, a(8)=2, a(9)=2, a(10)=3, a(11)=3, a(12)=4, a(13)=4, a(14)=4, a(15)=5, a(16)=5, a(17)=6, a(n)=a(n1)+a(n5)a(n6)+a(n12)a(n13)a(n17)+a(n18).  Harvey P. Dale, May 11 2014


MATHEMATICA

CoefficientList[Series[1/((1x)(1x^5)(1x^12)), {x, 0, 70}], x] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1}, {1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6}, 70] (* Harvey P. Dale, May 11 2014 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



