login
A025563
a(n) = (1/1 + 1/(n-1) + ... + 1/C(n-[ n/2 ],[ n/2 ]))*L, where L = LCM{1, n-1, ..., C(n-[ n/2 ],[ n/2 ])}.
1
1, 1, 2, 3, 7, 19, 71, 91, 485, 1195, 2825, 3379, 30311, 35440, 386765, 444215, 381599, 864173, 12849325, 14382075, 242411355, 268746270, 241122575, 265178965, 5523031235, 6032611435, 27525151138, 29887618948, 82357018570, 88965868595
OFFSET
0,3
LINKS
MAPLE
f:= proc(n) local S, i;
S:= seq(binomial(n-i, i), i=0..floor(n/2));
add(1/i, i = [S])* ilcm(S)
end proc:
map(f, [$0..30]); # Robert Israel, Jan 27 2024
CROSSREFS
Sequence in context: A060276 A337187 A358049 * A336296 A224929 A110887
KEYWORD
nonn
EXTENSIONS
a(0) = 1 prepended by Robert Israel, Jan 27 2024
STATUS
approved