login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into 5 nonzero squares.
23

%I #38 Aug 25 2022 03:38:36

%S 0,0,0,0,0,1,0,0,1,0,0,1,0,1,1,0,1,1,0,1,2,1,1,1,1,1,1,1,1,3,1,1,3,0,

%T 1,3,1,3,2,1,3,2,1,3,3,2,3,2,2,2,2,3,3,5,2,2,5,1,3,5,1,5,4,2,5,3,2,5,

%U 5,3,4,4,4,3,5,4,4,7,3,5,6,2,4,7,4,7,6,3,7,4,3,8,6,5,7,5,5,4,6,7,6,9,5,6,8,2,8

%N Number of partitions of n into 5 nonzero squares.

%C a(33) is the last zero in this sequence, cf. the link to Mathematics Stack Exchange and also A080673(n) for the largest index k with a(k)=n. - _M. F. Hasler_, May 30 2014

%C First occurrence of k beginning with 0: 0, 5, 20, 29, 62, 53, 80, 77, 91, 101, ..., (A080654). - _Robert G. Wilson v_, May 30 2014

%H M. F. Hasler, <a href="/A025429/b025429.txt">Table of n, a(n) for n = 0..10000</a>

%H H. v. Eitzen, in reply to user James47, <a href="http://math.stackexchange.com/questions/811824/what-is-the-largest-integer-with-only-one-representation-as-a-sum-of-five-nonzer">What is the largest integer with only one representation as a sum of five nonzero squares?</a> on Mathematics Stack Exchange, May 2014

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>

%F a(n) = [x^n y^5] Product_{k>=1} 1/(1 - y*x^(k^2)). - _Ilya Gutkovskiy_, Apr 19 2019

%F a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-1)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(l) * A010052(n-i-j-k-l). - _Wesley Ivan Hurt_, Apr 19 2019

%p b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),

%p `if`(i<1 or t<1, 0, b(n, i-1, t)+

%p `if`(i^2>n, 0, b(n-i^2, i, t-1))))

%p end:

%p a:= n-> b(n, isqrt(n), 5):

%p seq(a(n), n=0..120); # _Alois P. Heinz_, May 30 2014

%t f[n_] := Block[{c = Range@ Sqrt@ n^2}, Length@ IntegerPartitions[n, {5}, c]]; Array[f, 105, 0] (* _Robert G. Wilson v_, May 30 2014 *)

%t b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t==0, 1, 0], If[i<1 || t<1, 0, b[n, i-1, t] + If[i^2>n, 0, b[n-i^2, i, t-1]]]]; a[n_] := b[n, Sqrt[n] // Floor, 5]; Table[a[n], {n, 0, 120}] (* _Jean-François Alcover_, Oct 12 2015, after _Alois P. Heinz_ *)

%o (PARI) A025429(n)=sum(d=sqrtint(max(n, 5)\5), sqrtint(max(n-4, 0)), nn=n-d^2; sum(a=sqrtint(max(nn-d^2, 4)\4), min(sqrtint(max(nn-3, 0)),d), sum(b=sqrtint((nn-a^2)\3-1)+1, min(sqrtint(nn-a^2-2), a), sum(c=sqrtint((t=nn-a^2-b^2)\2-1)+1, min(sqrtint(t-1), b), issquare(t-c^2) )))) \\ _M. F. Hasler_, May 30 2014

%Y Column k=5 of A243148.

%K nonn,easy,look

%O 0,21

%A _David W. Wilson_