%I
%S 27625,32045,40885,45305,47125,55250,58565,60125,61625,64090,66625,
%T 67405,69745,71825,77285,78625,80665,81770,86125,87125,90610,91205,
%U 93925,94250,98345,98605,99125,99905,101065,105625,107185,110500,111605,112625
%N Numbers that are the sum of 2 distinct nonzero squares in 7 or more ways.
%C Subsequence of A025298. But sequences A025317 and A025298 are different. 2*5^12 = 488281250 = 15625^2 + 15625^2 (not distinct squares) = 14395^2 + 16765^2 = 10625^2 + 19375^2 = 9125^2 + 20125^2 = 4775^2 + 21575^2 = 3125^2 + 21875^2 = 1457^2 + 22049^2 is not in A025317.  _Vaclav Kotesovec_, Feb 27 2016
%C Numbers in A025298 but not in A025317 are exactly those numbers of the form 2*p_1^(2*a_1)*p_2^(2*a_2)*...*p_m^(2*a_m)*q^12 where p_i are primes of the form 4k+3 and q is a prime of the form 4k+1. Thus 2*5^12 is the smallest term in A025298 that is not in A025317.  _Chai Wah Wu_, Feb 27 2016
%H Chai Wah Wu, <a href="/A025317/b025317.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%t nn = 112625; t = Table[0, {nn}]; lim = Floor[Sqrt[nn  1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i  1}]; Flatten[Position[t, _?(# >= 7 &)]] (* _T. D. Noe_, Apr 07 2011 *)
%K nonn
%O 1,1
%A _David W. Wilson_
