Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Mar 04 2019 09:20:17
%S 325,425,650,725,845,850,925,1025,1105,1250,1300,1325,1445,1450,1525,
%T 1625,1690,1700,1825,1850,1885,2050,2125,2210,2225,2405,2425,2465,
%U 2525,2600,2650,2665,2725,2825,2873,2890,2900,2925,3050,3125,3145,3250,3380
%N Numbers that are the sum of 2 nonzero squares in 3 or more ways.
%C A025426(a(n)) > 2. - _Reinhard Zumkeller_, Feb 26 2015
%H Robert Israel and Reinhard Zumkeller, <a href="/A025294/b025294.txt">Table of n, a(n) for n = 1..10000</a> (first 2508 terms from Robert Israel)
%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%p N:= 100000: # generate all entries <=N
%p SSQ:= {}: SSQ2:= {}: SSQ3:= {}:
%p for a from 1 to floor(sqrt(N)) do
%p for b from a to floor(sqrt(N-a^2)) do
%p n:= a^2 + b^2;
%p if member(n,SSQ2) then SSQ3:= SSQ3 union {n}
%p elif member(n,SSQ) then SSQ2:= SSQ2 union {n}
%p else SSQ:= SSQ union {n}
%p end if
%p end do end do:
%p SSQ3; # _Robert Israel_, Jan 20 2013
%t okQ[n_] := Length[Select[PowersRepresentations[n, 2, 2][[All, 1]], Positive] ] > 2; Select[Range[5000], okQ] (* _Jean-François Alcover_, Mar 04 2019 *)
%o (Haskell)
%o a025294 n = a025294_list !! (n-1)
%o a025294_list = filter ((> 2) . a025426) [1..]
%o -- _Reinhard Zumkeller_, Feb 26 2015
%Y Complement of A025285 relative to A007692. - _Washington Bomfim_, Oct 24 2010
%Y Cf. A025426.
%K nonn
%O 1,1
%A _David W. Wilson_