login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sopfr(n!), where sopfr = A001414 is the integer log.
8

%I #53 Dec 27 2023 11:55:10

%S 0,0,2,5,9,14,19,26,32,38,45,56,63,76,85,93,101,118,126,145,154,164,

%T 177,200,209,219,234,243,254,283,293,324,334,348,367,379,389,426,447,

%U 463,474,515,527,570,585,596,621,668,679,693,705,725,742,795,806,822,835,857,888

%N a(n) = sopfr(n!), where sopfr = A001414 is the integer log.

%D József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 144.

%H Chai Wah Wu, <a href="/A025281/b025281.txt">Table of n, a(n) for n = 0..10000</a> (terms n = 0..1000 from T. D. Noe)

%H Krishnaswami Alladi and Paul Erdős, <a href="https://projecteuclid.org/euclid.pjm/1102811427">On an additive arithmetic function</a>, Pacific Journal of Mathematics, Vol. 71, No. 2 (1977), pp. 275-294; <a href="https://msp.org/pjm/1977/71-2/pjm-v71-n2-p01-s.pdf">alternative link</a>.

%F a(n) = A001414(A000142(n)).

%F From _Benoit Cloitre_, Apr 14 2002: (Start)

%F a(0)=0; for n>0, a(n) = Sum_{k=1..n} A001414(k).

%F Asymptotic formula: a(n) ~ (Pi^2/12)*n^2/log(n). [Proven by Alladi and Erdős (1977). - _Amiram Eldar_, Mar 04 2021]

%F (End)

%p a:= proc(n) option remember; `if`(n<2, 0,

%p a(n-1)+add(i[1]*i[2], i=ifactors(n)[2]))

%p end:

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Apr 09 2021

%t sopfr[n_] := Plus @@ Times @@@ FactorInteger@ n; a[n_] := a[n] = a[n - 1] + sopfr[n]; a[0] = a[1] = 0; Array[a, 59, 0] (* _Robert G. Wilson v_, May 18 2015 *)

%o (PARI) for(n=1,100,print1(sum(k=1,n,sum(i=1,omega(k), component(component(factor(k),1),i)*component(component(factor(k),2),i))),","))

%o (Python)

%o from sympy import factorial, factorint

%o def A025281(n): return sum(p*e for p, e in factorint(factorial(n)).items()) # _Chai Wah Wu_, Apr 09 2021

%Y Partial sums of A001414.

%Y Cf. A000142, A072691.

%K nonn

%O 0,3

%A _Wouter Meeussen_