login
A025272
a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5.
1
1, 1, 1, 2, 6, 17, 50, 150, 458, 1420, 4460, 14165, 45422, 146870, 478366, 1568076, 5169332, 17127466, 57005220, 190503772, 638986740, 2150472248, 7259433880, 24574658829, 83404648534, 283742556262, 967415888822, 3305124188428
OFFSET
1,4
FORMULA
Conjecture: n*a(n) +(n+1)*a(n-1) +10*(-2*n+5)*a(n-2) +2*(2*n-9)*a(n-3) +2*(12*n-67)*a(n-4) +20*(n-7)*a(n-5)=0. - R. J. Mathar, Nov 21 2014
G.f.: 1/2 - sqrt(4*x^4+4*x^3-4*x+1)/2. - Vaclav Kotesovec, Jan 25 2015
Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 2*(2*n-9)*a(n-3) - 4*(n-6)*a(n-4). - Vaclav Kotesovec, Jan 25 2015
MATHEMATICA
nmax = 30; aa = ConstantArray[0, nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 1; aa[[4]] = 2; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]], {k, 1, n-1}], {n, 5, nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
Rest@ CoefficientList[Series[1/2 - Sqrt[4 x^4 + 4 x^3 - 4 x + 1]/2, {x, 0, 28}], x] (* Michael De Vlieger, Jan 02 2020 *)
PROG
(Magma) a:=[1, 1, 1, 2]; for n in [5..30] do Append(~a, &+[a[k]*a[n-k]:k in [1..n-1]] ); end for; a; // Marius A. Burtea, Jan 02 2020
CROSSREFS
Sequence in context: A270863 A027914 A098703 * A356783 A148447 A148448
KEYWORD
nonn
STATUS
approved