Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 17 2018 21:42:32
%S 1,-1,1,1,0,0,2,3,1,2,11,17,12,25,81,127,134,276,696,1118,1492,3005,
%T 6607,10935,16766,33047,67249,114611,190706,369424,719956,1258251,
%U 2196855,4201958,8000409,14263679,25620508,48585009,91421253,165467590
%N a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-3)*a(3) for n >= 4.
%H Michael De Vlieger, <a href="/A025258/b025258.txt">Table of n, a(n) for n = 1..3544</a>
%H Paul Barry, <a href="https://arxiv.org/abs/1807.05794">Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences</a>, arXiv:1807.05794 [math.CO], 2018.
%F Conjecture: -n*a(n) +(2*n-3)*a(n-1) +3*(-n+3)*a(n-2) +3*(2*n-9)*a(n-3) +(-n+6)*a(n-4)=0. - _R. J. Mathar_, Feb 25 2015
%t Nest[Function[a, Append[a, Inner[Times, #1, #2, Plus] & @@ Transpose @@ {Array[{a[[#]], a[[-#]]} &, Length[a] - 2 ]}] ], {1, -1, 1, 1}, 36] (* _Michael De Vlieger_, Oct 17 2018 *)
%K sign
%O 1,7
%A _Clark Kimberling_