login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025252
a(n) = (1/2)*s(n+3), where s = A025251.
1
0, 1, 2, 1, 6, 9, 12, 41, 60, 121, 310, 505, 1162, 2577, 4760, 11089, 23256, 47089, 107274, 223345, 476366, 1061017, 2237796, 4888313, 10745748, 23048169, 50792638, 111180265, 241786898, 534219297, 1170798128, 2570337441, 5684509232, 12503504353, 27613172114
OFFSET
1,3
FORMULA
G.f.: (1 - x^2 - 4*x^3 - sqrt(1 - 2*x^2 - 8*x^3 + x^4)) / (4*x^3). - Michael Somos, Jun 08 2000
(n+3)*a(n) +(n+2)*a(n-1) -2*n*a(n-2) +2*(-5*n+7)*a(n-3) +(-7*n+17)*a(n-4) +(n-4)*a(n-5)=0. - R. J. Mathar, Dec 15 2013
0 = a(n)*(+a(n+1) - 20*a(n+2) - 8*a(n+3) + 7*a(n+5)) +a(n+1)*(+4*a(n+1) + 68*a(n+2) + 40*a(n+3) - 5*a(n+4) - 44*a(n+5)) + a(n+2)*(-8*a(n+2) + 4*a(n+3) + 28*a(n+4) - 8*a(n+5)) + a(n+3)*(+4*a(n+4)) + a(n+4)*(+a(n+5)) for all n>0. - Michael Somos, Feb 08 2015
a(n) = A160565(n) for all n>0. - Michael Somos, Feb 08 2015
EXAMPLE
G.f. = x^2 + 2*x^3 + x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 41*x^8 + 60*x^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1 - x^2 - 4 x^3 - Sqrt[1 - 2 x^2 - 8 x^3 + x^4]) / (4 x^3), {x, 0, n}]; (* Michael Somos, Feb 08 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, polcoeff( (-sqrt(1 - 2*x^2 - 8*x^3 + x^4 + x^4*O(x^n))) / 4, n+3))};
CROSSREFS
Sequence in context: A276664 A335663 A160565 * A348108 A177863 A193601
KEYWORD
nonn
STATUS
approved