login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025141
a(n) = (k-1)st elementary symmetric function of C(n,0), C(n,1), ..., C(n,k), where k = floor( n/2 ).
1
1, 1, 11, 16, 551, 1190, 178024, 564678, 410606100, 1876011225, 6915255136416, 44675417804160, 847468391006481244, 7637169791538787500, 749927054569389785088000, 9345619999880270191554560, 4766524174302701575265292220416, 81712716729371439637617531305856
OFFSET
2,3
LINKS
MAPLE
a:= n-> (k-> coeff(mul(binomial(n, i)*x+1, i=0..k), x, k-1))(iquo(n, 2)):
seq(a(n), n=2..20); # Alois P. Heinz, Sep 08 2019
MATHEMATICA
ESym[u_] := Module[{v, t}, v = Table[0, {Length[u] + 1}]; v[[1]] = 1; For[i = 1, i <= Length[u], i++, t = u[[i]]; For[j = i, j >= 1, j--, v[[j + 1]] += v[[j]]*t]]; v];
a[n_] := ESym[Table[Binomial[n, k], {k, 0, Floor[n/2]}]][[Floor[n/2]]];
a /@ Range[2, 19] (* Jean-François Alcover, Sep 08 2019, from PARI *)
PROG
(PARI)
ESym(u)={my(v=vector(#u+1)); v[1]=1; for(i=1, #u, my(t=u[i]); forstep(j=i, 1, -1, v[j+1]+=v[j]*t)); v}
a(n)={if(n>=2, ESym(binomial(n)[1..1+n\2])[n\2])} \\ Andrew Howroyd, Dec 19 2018
CROSSREFS
Sequence in context: A032327 A032075 A024147 * A226678 A105709 A256546
KEYWORD
nonn
EXTENSIONS
Terms a(14) and beyond from Andrew Howroyd, Dec 19 2018
STATUS
approved