login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of { 1, 2, ..., 8n } into sets of size 8.
3

%I #28 Aug 08 2024 11:05:06

%S 1,1,6435,1577585295,4148378852099625,63805953776276649848625,

%T 4012852078114749147678149338875,

%U 814318942973348333484015877548157809375,450538787986875167583433232345723106006796340625

%N Number of partitions of { 1, 2, ..., 8n } into sets of size 8.

%H Andrew Howroyd, <a href="/A025040/b025040.txt">Table of n, a(n) for n = 0..50</a>

%H Cyril Banderier, Philippe Marchal, and Michael Wallner, <a href="https://arxiv.org/abs/1805.09017">Rectangular Young tableaux with local decreases and the density method for uniform random generation</a> (short version), arXiv:1805.09017 [cs.DM], 2018.

%F a(n) = (8n)!/(n!(8!)^n). - _Christian G. Bower_, Sep 15 1998

%t Table[Pochhammer[n + 1, 7*n]/8!^n, {n, 0, 10}] (* _Paolo Xausa_, Aug 08 2024 *)

%Y Column k=8 of A060540.

%K nonn

%O 0,3

%A _David W. Wilson_

%E a(0)=1 from _Andrew Howroyd_, Feb 26 2018