|
|
A025038
|
|
Number of partitions of { 1, 2, ..., 6n } into sets of size 6.
|
|
2
|
|
|
1, 1, 462, 2858856, 96197645544, 11423951396577720, 3708580189773818399040, 2779202577056119960603777920, 4263127221846887596248598498826880, 12233832241625685631640659383106015132800, 61247286460823449786646954166350590676638060800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 0..50
Cyril Banderier, Philippe Marchal, Michael Wallner, Rectangular Young tableaux with local decreases and the density method for uniform random generation (short version), arXiv:1805.09017 [cs.DM], 2018.
|
|
FORMULA
|
a(n) = (6n)!/(n!(6!)^n). - Christian G. Bower, Sep 15 1998
|
|
PROG
|
(Sage) [rising_factorial(n+1, 5*n)/720^n for n in (0..15)] # Peter Luschny, Jun 26 2012
|
|
CROSSREFS
|
Column k=6 of A060540.
Sequence in context: A295432 A213406 A294853 * A028684 A212928 A102997
Adjacent sequences: A025035 A025036 A025037 * A025039 A025040 A025041
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David W. Wilson
|
|
EXTENSIONS
|
a(0) and a(10) from Andrew Howroyd, Feb 26 2018
|
|
STATUS
|
approved
|
|
|
|