login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of parts in all partitions of n into distinct prime parts.
8

%I #27 Dec 28 2017 21:27:35

%S 0,1,1,0,3,0,3,2,2,5,1,5,3,5,5,7,5,10,6,10,12,10,15,12,16,17,17,19,22,

%T 17,27,21,30,30,31,35,36,40,45,45,49,53,50,62,60,69,69,73,78,85,88,98,

%U 100,105,116,116,134,135,141,149,154,168,176,188,195,206,211,232,242,255,267,276

%N Total number of parts in all partitions of n into distinct prime parts.

%H Alois P. Heinz, <a href="/A024938/b024938.txt">Table of n, a(n) for n = 1..1000</a>

%F G.f.: sum(x^p(j)/(1+x^p(j)),j>=1)*product(1+x^p(j), j>=1), where p(j) is the j-th prime. - _Vladeta Jovovic_, Jul 17 2003

%e a(16) = 7 because the partitions of 16 into distinct prime parts are [13,3], [11,5] and [11,3,2].

%p g:=sum(x^ithprime(j)/(1+x^ithprime(j)),j=1..30)*product(1+x^ithprime(j),j=1..30): gser:=series(g,x=0,80): seq(coeff(gser,x,n),n=1..75); # _Emeric Deutsch_, Apr 01 2006

%p # second Maple program:

%p with(numtheory):

%p b:= proc(n, i) option remember; local g;

%p if n=0 then [1, 0]

%p elif i<1 then [0, 0]

%p else g:= `if`(ithprime(i)>n, [0$2], b(n-ithprime(i), i-1));

%p b(n, i-1) +g +[0, g[1]]

%p fi

%p end:

%p a:= n-> b(n, pi(n))[2]:

%p seq(a(n), n=1..80); # _Alois P. Heinz_, Oct 30 2012

%t Rest@ CoefficientList[ Series[ Sum[x^Prime@j/(1 + x^Prime@j), {j, 20}]* Product[1 + x^Prime@j, {j, 20}], {x, 0, 70}], x] (* _Robert G. Wilson v_ *)

%t b[n_, i_] := b[n, i] = Module[{g}, If[n==0, {1, 0}, If[i < 1, {0, 0}, g = If[ Prime[i] > n, {0, 0}, b[n - Prime[i], i-1]]; b[n, i-1] + g + {0, g[[1]]}]]]; a[n_] := b[n, PrimePi[n]][[2]]; Table[a[n], {n, 1, 80}] (* _Jean-François Alcover_, Dec 27 2015, after _Alois P. Heinz_ *)

%o (PARI)

%o sumparts(n, pred)={sum(k=1, n, 1 - 1/(1+pred(k)*x^k) + O(x*x^n))*prod(k=1, n, 1+pred(k)*x^k + O(x*x^n))}

%o {my(n=60); Vec(sumparts(n, isprime), -n)} \\ _Andrew Howroyd_, Dec 28 2017

%Y Cf. A084993.

%K easy,nonn

%O 1,5

%A _Clark Kimberling_

%E More terms from _Vladeta Jovovic_, Jul 17 2003