Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Oct 29 2023 13:32:41
%S -1,0,-4,1,-5,-1,-9,4,-9,-3,-15,5,-9,-1,-25,4,-14,-1,-21,9,-23,-11,
%T -35,17,-14,0,-40,0,-30,-6,-38,23,-25,-7,-55,10,-28,-8,-64,14,-28,4,
%U -40,20,-58,-34,-82,34,-23,8,-64,6,-48,-8,-80,24,-56,-26,-86,34,-28,4,-100,25,-59
%N a(n) = Sum_{k=1..n} (-1)^k*k*floor(n/k).
%C n - 2*[ n/2 ] + 3*[ n/3 ] - ... + m*n*[ n/n ], where m = (-1)^(n+1).
%H Seiichi Manyama, <a href="/A024919/b024919.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = 4*A024916(floor(n/2)) - A024916(n). - _Vladeta Jovovic_, Oct 15 2002
%F G.f.: 1/(1-x) * Sum_{n>=1} n*x^n*(3*x^n-1)/(1-x^(2*n)). - _Vladeta Jovovic_, Oct 15 2002
%F G.f.: -1/(1-x) * Sum_{k>=1} x^k/(1+x^k)^2 = 1/(1-x) * Sum_{k>=1} k * (-x)^k/(1-x^k). - _Seiichi Manyama_, Oct 29 2023
%t f[n_] := Sum[(-1)^i*i*Floor[n/i], {i, 1, n}]; Table[ f[n], {n, 1, 85}]
%o (PARI) a(n) = sum(k=1, n, (-1)^k*k*floor(n/k));
%o (Magma) [&+[(-1)^k*k*(n div k): k in [1..n]]: n in [1..70]]; // _Vincenzo Librandi_, Jul 28 2019
%o (Python)
%o from math import isqrt
%o def A024919(n): return (-(s:=isqrt(m:=n>>1))**2*(s+1) + sum((q:=m//k)*((k<<1)+q+1) for k in range(1,s+1))<<1)+((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # _Chai Wah Wu_, Oct 22 2023
%Y The zeros are A072663.
%Y Partial sums of A002129.
%Y Cf. A024916, A309124.
%K sign
%O 1,3
%A _Clark Kimberling_
%E Edited by _Robert G. Wilson v_, Aug 17 2002