login
a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 3), t = (F(2), F(3), F(4), ...).
0

%I #4 Mar 30 2012 18:56:00

%S 6,9,27,44,96,155,299,484,874,1414,2456,3974,6736,10899,18185,29424,

%T 48588,78617,128933,208618,340580,551070,896928,1451260,2357338,

%U 3814253,6187383

%N a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 3), t = (F(2), F(3), F(4), ...).

%F G.f.: x^2*(1+x)*(2*x^6+4*x^4+x^3-3*x^2+3*x-6)/ ((x^2+x-1) * (x^4+x^2-1)^2) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009]

%K nonn

%O 2,1

%A _Clark Kimberling_