|
|
A024872
|
|
a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers >= 2), t = (Fibonacci numbers).
|
|
0
|
|
|
2, 4, 12, 19, 43, 70, 138, 223, 409, 662, 1162, 1880, 3210, 5194, 8710, 14093, 23353, 37786, 62118, 100509, 164355, 265932, 433316, 701120, 1139714, 1844096, 2992960, 4842711, 7851463, 12703934, 20582546, 33303259, 53932317, 87264322
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (1,3,-2,-1,-1,-3,2,1,1,1).
|
|
FORMULA
|
G.f.: x^2 *(x+1) *(x^5-x^4+3*x^3-2*x^2-2) /((x^2+x-1)*(x^4+x^2-1)^2) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|