login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+3)/m < s for some integer k.
3

%I #16 Aug 31 2022 23:06:37

%S 7,28,61,106,163,232,313,406,511,647,780,946,1105,1301,1486,1712,1923,

%T 2179,2416,2702,2965,3281,3570,3916,4231,4607,4999,5356,5778,6216,

%U 6613,7081,7565,8002,8516,9046,9523,10083,10659,11176,11782,12404,12961,13613,14281,14878

%N a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+3)/m < s for some integer k.

%C For a guide to related sequences, see A001000. - _Clark Kimberling_, Aug 12 2012

%C From _Jianing Song_, Aug 31 2022: (Start)

%C Smallest m such that ceiling(m/(2*j-1)) - floor(m/(2*j+1)) = 5 for 1 <= j <= n-1.

%C Obviously we have a(n) > 3/(1/(2*n-3) - 1/(2*n-1)) => a(n) >= 6*n^2 - 12*n + 5. On the other hand, a(n) <= 4/(1/(2*n-3) - 1/(2*n-1)) + 1 = 2*(2*n-1)*(2*n-3) + 1: if m >= 2*(2*n-1)*(2*n-3) + 1, then m/(2*j-1) - m/(2*j+1) > 4 => ceiling(m/(2*j-1)) - floor(m/(2*j+1)) = ceiling(m/(2*j-1)-floor(m/(2*j+1))) >= ceiling(m/(2*j-1) - m/(2*j+1)) >= 5 for 1 <= j <= n-1. (End)

%H Clark Kimberling, <a href="/A024844/b024844.txt">Table of n, a(n) for n = 2..100</a>

%t leastSeparatorS[seq_, s_] := Module[{n = 1},

%t Table[While[Or @@ (Ceiling[n #1[[1]]] <

%t s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@

%t Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];

%t t = Map[leastSeparatorS[1/(2*Range[50]-1), #] &, Range[5]];

%t t[[4]] (* A024844 *)

%t (* _Peter J. C. Moses_, Aug 06 2012 *)

%o (PARI) a(n) = for(m=6*n^2-12*n+5, 8*n^2-16*n+7, forstep(j=n-1, 1, -1, if(-((-m)\(2*j-1)) - m\(2*j+1) < 5, break(), if(j==1, return(m))))) \\ _Jianing Song_, Aug 31 2022

%Y Cf. A001000, A024845.

%K nonn

%O 2,1

%A _Clark Kimberling_