OFFSET
1,1
MAPLE
a:=[[2], [3], [5]]: b:=[]: l1:=1: l2:=3: do for k from 1 to 6 do for j from l1 to l2 do d:=[op(a[j]), k]: if(isprime(op(convert(d, base, 7, 7^nops(d)))))then a:=[op(a), d]: fi: od: od: l1:=l2+1: l2:=nops(a): if(l1>l2)then break: fi: od: seq(op(convert(a[j], base, 10, 10^nops(a[j]))), j=1..nops(a)); # Nathaniel Johnston, Jun 21 2011
PROG
(Python)
from sympy import isprime
def afull():
prime_strings, alst = list("235"), []
while len(prime_strings) > 0:
alst.extend(sorted(int(p) for p in prime_strings))
candidates = set(d+p for p in prime_strings for d in "123456")
prime_strings = [c for c in candidates if isprime(int(c, 7))]
return alst
print(afull()) # Michael S. Branicky, Apr 27 2022
CROSSREFS
KEYWORD
nonn,easy,base,fini,full
AUTHOR
STATUS
approved