login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024719
a(n) = (1/3)*(2 + Sum_{k=0..n} C(3k,k)).
1
1, 2, 7, 35, 200, 1201, 7389, 46149, 291306, 1853581, 11868586, 76380826, 493606726, 3201081874, 20821158234, 135776966762, 887393271311, 5811082966886, 38119865826421, 250447855600321, 1647729357535486, 10854207824989831, 71581930485576631, 472560922429972951, 3122648143126315651
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(k-n,2n-2k). - Paul Barry, Mar 15 2010
G.f.: (1-2*g)/((3*g-1)*(g^3-2*g^2+g-1)) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
Conjecture: 2*n*(2*n-1)*a(n) + (-31*n^2 + 29*n - 6)*a(n-1) +3*(3*n-1)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, Sep 29 2012
a(n) ~ 3^(3*n + 5/2)/(23*2^(2*n+1)*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 07 2012
MATHEMATICA
Table[Sum[Binomial[k-n, 2n-2k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 07 2012 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(k-n, 2*(n-k)) ); \\ Joerg Arndt, May 04 2013
CROSSREFS
Sequence in context: A058941 A287327 A020066 * A086637 A172511 A214461
KEYWORD
nonn
EXTENSIONS
More terms from James A. Sellers, May 01 2000
STATUS
approved