login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (prime(n)^2 - 1)/24.
33

%I #113 Oct 27 2021 09:36:10

%S 1,2,5,7,12,15,22,35,40,57,70,77,92,117,145,155,187,210,222,260,287,

%T 330,392,425,442,477,495,532,672,715,782,805,925,950,1027,1107,1162,

%U 1247,1335,1365,1520,1552,1617,1650,1855,2072,2147,2185,2262,2380,2420,2625,2752,2882,3015

%N a(n) = (prime(n)^2 - 1)/24.

%C Note that p^2 - 1 is always divisible by 24 since p == 1 or 2 (mod 3), so p^2 == 1 (mod 3) and p == 1, 3, 5, or 7 (mod 8) so p^2 == 1 (mod 8). - _Michael B. Porter_, Sep 02 2016

%C For n > 3 and m > 1, a(n) = A000330(m)/(2*m + 1), where 2*m + 1 = prime(n). For example, for m = 8, 2*m + 1 = 17 = prime(7), A000330(8) = 204, 204/17 = 12 = a(7). - _Richard R. Forberg_, Aug 20 2013

%C For primes => 5, a(n) == 0 or 2 (mod 5). - _Richard R. Forberg_, Aug 28 2013

%C The only primes in this sequence are 2, 5 and 7 (checked up to n = 10^7). The set of prime factors, however, appears to include all primes. - _Richard R. Forberg_, Feb 28 2015

%C Subsequence of generalized pentagonal numbers (cf. A001318): a(n) = k_n*(3*k_n - 1)/2, for k_n in {1, -1, 2, -2, 3, -3, 4, 5, -5, -6, 7, -7, 8, 9, 10, -10, ...} = A024699(n-2)*((A000040(n) mod 6) - 3)/2, n >= 3. - _Daniel Forgues_, Aug 02 2016

%C The only primes in this sequence are indeed 2, 5 and 7. For a prime p >= 5, if both p + 1 and p - 1 contains a prime factor > 3, then (p^2 - 1)/24 = (p + 1)*(p - 1)/24 contains at least 2 prime factors, so at least one of p + 1 and p - 1 is 3-smooth. Let's call it s. Also, If (p^2 - 1)/24 is a prime, then A001222(p^2-1) = 5. Since A001222(p+1) and A001222(p-1) are both at least 2, A001222(s) <= 5 - 2 = 3. From these we can see the only possible cases are p = 7, 11 and 13. - _Jianing Song_, Dec 28 2018

%H Charles R Greathouse IV, <a href="/A024702/b024702.txt">Table of n, a(n) for n = 3..10000</a>

%H Brady Haran and Matt Parker, <a href="https://www.youtube.com/watch?v=ZMkIiFs35HQ">Squaring Primes</a>, Numberphile video (2018).

%H Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_1060.htm">Puzzle 1060. Can you find more solutions?</a>, The Prime Puzzles and Problems Connection. [Asks for squares in this sequence]

%F a(n) = (A000040(n)^2 - 1)/24 = (A001248(n) - 1)/24. - _Omar E. Pol_, Dec 07 2011

%F a(n) = A005097(n-1)*A006254(n-1)/6. - _Bruno Berselli_, Dec 08 2011

%F a(n) = A084920(n)/24. - _R. J. Mathar_, Aug 23 2013

%F a(n) = A127922(n)/A000040(n) for n >= 3. - _César Aguilera_, Nov 01 2019

%e For n = 6, the 6th prime is 13, so a(6) = (13^2 - 1)/24 = 168/24 = 7.

%p A024702:=n->(ithprime(n)^2-1)/24: seq(A024702(n), n=3..70); # _Wesley Ivan Hurt_, Mar 01 2015

%t (Prime[Range[3,100]]^2-1)/24 (* _Vladimir Joseph Stephan Orlovsky_, Mar 15 2011 *)

%o (PARI) a(n)=prime(n)^2\24 \\ _Charles R Greathouse IV_, May 30 2013

%o (PARI) is(n)=my(k);issquare(24*n+1,&k)&&isprime(k) \\ _Charles R Greathouse IV_, May 31 2013

%Y Subsequence of generalized pentagonal numbers A001318.

%Y Cf. A075888.

%K nonn,easy

%O 3,2

%A _Clark Kimberling_, Dec 11 1999