login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024522
a(n) = 2nd elementary symmetric function of {1, prime(1), prime(2), ..., prime(n-1)}, where prime(0) = 1.
0
2, 11, 41, 118, 316, 693, 1407, 2528, 4322, 7251, 11281, 17238, 25356, 35633, 48887, 66324, 88862, 115763, 149397, 189796, 236516, 292843, 358579, 436454, 529962, 637123, 756809, 892164, 1041712, 1209065, 1411503, 1636954, 1890678, 2167149, 2484221, 2828048
OFFSET
2,1
MAPLE
b:= proc(n) option remember; convert(series(`if`(n=0, 1, b(n-1)*
(`if`(n=1, 1, ithprime(n-1))*x+1)), x, 3), polynom)
end:
a:= n-> coeff(b(n), x, 2):
seq(a(n), n=2..40); # Alois P. Heinz, Sep 08 2019
MATHEMATICA
b[n_] := b[n] = Series[If[n == 0, 1, b[n - 1]*(If[n == 1, 1, Prime[n - 1]]*x + 1)], {x, 0, 3}] // Normal;
a[n_] := Coefficient[b[n], x, 2];
Table[a[n], {n, 2, 40}] (* Jean-François Alcover, Dec 26 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A000040.
Sequence in context: A173580 A062256 A378493 * A144841 A203245 A121244
KEYWORD
nonn
STATUS
approved