%I #16 Jul 30 2015 22:09:30
%S 1,28,521,8132,115425,1547436,20005177,252510484,3136438289,
%T 38534838524,469928249193,5701527366756,68933583580993,
%U 831438081590092,10011928868278169,120426060354676148,1447414807491149937
%N Expansion of 1/((1-x)(1-7x)(1-8x)(1-12x)).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (28, -263, 908, -672).
%F a(0)=1, a(1)=28, a(2)=521, a(3)=8132; for n>3, a(n) = 28*a(n-1)-263*a(n-2)+ 908*a(n-3)- 672*a(n-4) [_Harvey P. Dale_, Oct 15 2011]
%F a(n) = (21*12^(n+3) - 165*8^(n+3) + 154*7^(n+3) - 10)/4620. [_Yahia Kahloune_, Jun 30 2013]
%t CoefficientList[Series[1/((1-x)(1-7x)(1-8x)(1-12x)),{x,0,30}],x] (* or *) LinearRecurrence[{28,-263,908,-672},{1,28,521,8132},30] (* _Harvey P. Dale_, Oct 15 2011 *)
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.