OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
G.f.: -x*(x^4+332*x^3+3048*x^2+4244*x+880) / (x-1)^9. - Colin Barker, Aug 15 2014
a(n) = n*(n+1)*(n+2)*(n+3)*(405*n^4+4590*n^3+18495*n^2+30534*n+16376)/1920. - Robert Israel, Aug 15 2014
EXAMPLE
sigma_4(2,5,8,11,14,17) = 2*5*8*11 + 2*5*8*14 + 2*5*8*17 + 2*5*11*14 + 2*5*11*17 + 2*5*14*17 + 2*8*11*14 + 2*8*11*17 + 2*8*14*17 + 2*11*14*17 + 5*8*11*14 + 5*8*11*17 + 5*8*14*17 + 5*11*14*17 + 8*11*14*17 = 80844. This is also the value of n(n+1)(n+2)(n+3)(16376+30534*n+18495*n^2+4590*n^3+405*n^4)/1920 for n=3. - Neven Juric (neven.juric(AT)apis-it.hr), Jun 25 2005
MAPLE
seq(n*(n+1)*(n+2)*(n+3)*(405*n^4+4590*n^3+18495*n^2+30534*n+16376)/1920, n=0..30); # Robert Israel, Aug 15 2014
MATHEMATICA
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {880, 12164, 80844, 363944, 1276009, 3751209, 9668253, 22494813, 48216663}, 30] (* Harvey P. Dale, Nov 14 2018 *)
PROG
(PARI) Vec(-x*(x^4+332*x^3+3048*x^2+4244*x+880)/(x-1)^9 + O(x^100)) \\ Colin Barker, Aug 15 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(3) corrected by Neven Juric, Jun 25 2005
STATUS
approved