login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024393
4th elementary symmetric function of the first n+3 positive integers congruent to 2 mod 3.
3
880, 12164, 80844, 363944, 1276009, 3751209, 9668253, 22494813, 48216663, 96625243, 183045863, 330597267, 573081782, 958613782, 1554102702, 2450715342, 3770450706, 5673969126, 8369825926, 12125268386, 17278763271, 24254430695
OFFSET
1,1
FORMULA
G.f.: -x*(x^4+332*x^3+3048*x^2+4244*x+880) / (x-1)^9. - Colin Barker, Aug 15 2014
a(n) = n*(n+1)*(n+2)*(n+3)*(405*n^4+4590*n^3+18495*n^2+30534*n+16376)/1920. - Robert Israel, Aug 15 2014
EXAMPLE
sigma_4(2,5,8,11,14,17) = 2*5*8*11 + 2*5*8*14 + 2*5*8*17 + 2*5*11*14 + 2*5*11*17 + 2*5*14*17 + 2*8*11*14 + 2*8*11*17 + 2*8*14*17 + 2*11*14*17 + 5*8*11*14 + 5*8*11*17 + 5*8*14*17 + 5*11*14*17 + 8*11*14*17 = 80844. This is also the value of n(n+1)(n+2)(n+3)(16376+30534*n+18495*n^2+4590*n^3+405*n^4)/1920 for n=3. - Neven Juric (neven.juric(AT)apis-it.hr), Jun 25 2005
MAPLE
seq(n*(n+1)*(n+2)*(n+3)*(405*n^4+4590*n^3+18495*n^2+30534*n+16376)/1920, n=0..30); # Robert Israel, Aug 15 2014
MATHEMATICA
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {880, 12164, 80844, 363944, 1276009, 3751209, 9668253, 22494813, 48216663}, 30] (* Harvey P. Dale, Nov 14 2018 *)
PROG
(PARI) Vec(-x*(x^4+332*x^3+3048*x^2+4244*x+880)/(x-1)^9 + O(x^100)) \\ Colin Barker, Aug 15 2014
CROSSREFS
Sequence in context: A380071 A206341 A357495 * A006052 A105976 A340342
KEYWORD
nonn,easy
EXTENSIONS
a(3) corrected by Neven Juric, Jun 25 2005
STATUS
approved