login
a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023532, t = A023533.
1

%I #7 Sep 07 2022 18:18:43

%S 1,0,0,1,0,1,1,0,0,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,

%T 2,1,2,2,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,2,1,2,2,1,1,2,2,1,2,2,2,2,

%U 0,1,1,1,1,1,0,1,1,1,1,1,1,0,1,2,1,2,2,1,2,1

%N a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023532, t = A023533.

%H G. C. Greubel, <a href="/A024375/b024375.txt">Table of n, a(n) for n = 1..5000</a>

%t A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1];

%t A023532[n_]:= If[IntegerQ[(Sqrt[8*n+9] -3)/2], 0, 1];

%t A025375[n_]:= A025075[n]= Sum[A023532[j]*A023533[n-j+1], {j, Floor[(n+1)/2]}];

%t Table[A025375[n], {n, 130}] (* _G. C. Greubel_, Sep 07 2022 *)

%o (Magma)

%o A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;

%o A023532:= func< n | IsSquare(8*n+9) select 0 else 1 >;

%o A025375:= func< n | (&+[A023532(k)*A023533(n+1-k): k in [1..Floor((n+1)/2)]]) >;

%o [A025375(n): n in [1..130]]; // _G. C. Greubel_, Sep 07 2022

%o (SageMath)

%o @CachedFunction

%o def A023533(n): return 0 if (binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n) else 1

%o def A023532(n): return 0 if is_square(8*n+9) else 1

%o def A025375(n): return sum(A023532(k)*A023533(n-k+1) for k in (1..((n+1)//2)))

%o [A025375(n) for n in (1..130)] # _G. C. Greubel_, Sep 07 2022

%Y Cf. A023532, A023533.

%K nonn

%O 1,35

%A _Clark Kimberling_