Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Feb 01 2022 07:13:00
%S 2,112,92672,365688832,4411282030592,127206964253949952,
%T 7496936195881447718912,809926025985929119868649472,
%U 148071124873925782667263194693632,43087047288444223765736160658186043392,19011875896715283767147325248912471990730752
%N Expansion of e.g.f. tanh(x)*tan(x), coefficients of powers x^(4*n+2).
%H G. C. Greubel, <a href="/A024342/b024342.txt">Table of n, a(n) for n = 0..120</a>
%F a(n) = 2 * A009837(n).
%t With[{nn=40},Take[CoefficientList[Series[Tanh[x]Tan[x],{x,0,nn}], x] Range[0,nn-2]!,{3,-1,4}]] (* _Harvey P. Dale_, May 02 2012 *)
%o (Magma)
%o m:=50; R<x>:=PowerSeriesRing(Rationals(), m);
%o b:= Coefficients(R!(Laplace( Tan(x)*Tanh(x) )));
%o [b[4*n-3]: n in [1..Floor((m-2)/4)]]; // _G. C. Greubel_, Jan 31 2022
%o (Sage) [factorial(4*n+2)*( tanh(x)*tan(x) ).series(x, 4*n+3).list()[4*n+2] for n in (0..20)] # _G. C. Greubel_, Jan 31 2022
%Y Cf. A000182, A009837, A296628.
%K nonn
%O 0,1
%A _R. H. Hardin_
%E Extended and signs tested by _Olivier Gérard_, Mar 15 1997
%E More terms from _Harvey P. Dale_, May 02 2012