login
a(n) = floor ( (2nd elementary symmetric function of 2,3,...,n+2)/(2+3+...+n+2) ).
1

%I #14 Aug 17 2019 00:52:15

%S 1,2,5,7,10,14,18,23,28,34,40,47,54,61,70,78,87,97,107,118,129,141,

%T 153,166,179,192,207,221,236,252,268,285,302,320,338,357,376,395,416,

%U 436,457,479,501,524

%N a(n) = floor ( (2nd elementary symmetric function of 2,3,...,n+2)/(2+3+...+n+2) ).

%H Ivan Neretin, <a href="/A024177/b024177.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = floor( A001701(n+1)/A000096(n+1) ). - _R. J. Mathar_, Oct 31 2011

%F G.f. ( -1-2*x^2+2*x^3-x^4-2*x^6+x^5-x^8+x^9 ) / ( (x^2+1)*(1+x+x^2)*(x^4-x^2+1)*(x-1)^3 ). - _R. J. Mathar_, Oct 31 2011

%F a(n) = floor(1/12 n (3 n^2 + 23 n + 46)/(n + 4)). - _Ivan Neretin_, May 21 2018

%t Table[Floor[1/12 n (3 n^2 + 23 n + 46)/(n + 4)], {n, 44}] (* _Ivan Neretin_, May 21 2018 *)

%K nonn

%O 1,2

%A _Clark Kimberling_