This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024174 a(n) is floor((4th elementary symmetric function of 1,2,..,n)/(3rd elementary symmetric function of 1,2,...,n)). 1

%I

%S 0,0,1,2,3,4,6,8,10,13,16,19,22,25,29,33,37,42,47,52,57,62,68,74,80,

%T 87,94,101,108,115,123,131,139,148,157,166,175,184,194,204,214,225,

%U 236,247,258,269,281,293,305,318,331,344,357,370,384,398,412,427,442

%N a(n) is floor((4th elementary symmetric function of 1,2,..,n)/(3rd elementary symmetric function of 1,2,...,n)).

%H Ivan Neretin, <a href="/A024174/b024174.txt">Table of n, a(n) for n = 3..10000</a>

%F Empirical g.f.: x^5*(x^7-2*x^6+2*x^5-2*x^4+x^3-x^2+x-1) / ((x-1)^3*(x^2+1)*(x^4+1)). - _Colin Barker_, Aug 16 2014

%F a(n) = floor( A000915(n-3)/A001303(n-2) ). - _R. J. Mathar_, Sep 23 2016

%F a(n) = floor((n - 3)(15n^3 + 15n^2 - 10n - 8)/(120n(n + 1))]. - _Ivan Neretin_, Nov 25 2016

%e G.f. = x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 6*x^9 + 8*x^10 + 10*x^11 + 13*x^12 + ...

%t Table[Floor[(n - 3) (15 n^3 + 15 n^2 - 10 n - 8)/(120 n (n + 1))], {n, 3, 45}] (* _Ivan Neretin_, Nov 25 2016 *)

%o (PARI) {a(n) = if( n<4, 0, (n-3) * (15*n^3 + 15*n^2 - 10*n - 8) \ (120 * n * (n+1)))}; /* _Michael Somos_, Nov 25 2016 */

%K nonn

%O 3,4

%A _Clark Kimberling_

%E Offset set to 3 by _R. J. Mathar_, Sep 23 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 18:17 EDT 2019. Contains 328319 sequences. (Running on oeis4.)