login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 12^n - 1.
10

%I #35 Dec 17 2023 08:07:15

%S 0,11,143,1727,20735,248831,2985983,35831807,429981695,5159780351,

%T 61917364223,743008370687,8916100448255,106993205379071,

%U 1283918464548863,15407021574586367,184884258895036415

%N a(n) = 12^n - 1.

%C In base 12 these are 0, B, BB, BBB, ... . - _David Rabahy_, Dec 12 2016

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (13,-12).

%F From _Mohammad K. Azarian_, Jan 14 2009: (Start)

%F G.f.: 1/(1-12*x) - 1/(1-x).

%F E.g.f.: exp(12*x) - exp(x). (End)

%F a(n) = 12*a(n-1) + 11 for n>0, a(0)=0. - _Vincenzo Librandi_, Nov 18 2010

%F a(n) = Sum_{i=1..n} 11^i*binomial(n,n-i) for n>0, a(0)=0. - _Bruno Berselli_, Nov 11 2015

%F From _Elmo R. Oliveira_, Dec 15 2023: (Start)

%F a(n) = 13*a(n-1) - 12*a(n-2) for n>1.

%F a(n) = A001021(n)-1 = A178248(n)-2.

%F a(n) = 11*(A016125(n) - 1)/12. (End)

%t 12^Range[0,20]-1 (* or *) LinearRecurrence[{13,-12},{0,11},20] (* _Harvey P. Dale_, Feb 01 2019 *)

%Y Cf. A001021, A016125, A178248.

%Y Cf. Similar sequences of the type k^n-1: A000004 (k=1), A000225 (k=2), A024023 (k=3), A024036 (k=4), A024049 (k=5), A024062 (k=6), A024075 (k=7), A024088 (k=8), A024101 (k=9), A002283 (k=10), A024127 (k=11), this sequence (k=12).

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_