login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 10^n - n^10.
4

%I #17 Sep 08 2022 08:44:48

%S 1,9,-924,-58049,-1038576,-9665625,-59466176,-272475249,-973741824,

%T -2486784401,0,74062575399,938082635776,9862141508151,99710745345024,

%U 999423349609375,9998900488372224,99997984006099551,999996429532773376

%N a(n) = 10^n - n^10.

%H Vincenzo Librandi, <a href="/A024124/b024124.txt">Table of n, a(n) for n = 0..300</a>

%F From _Chai Wah Wu_, Jan 26 2020: (Start)

%F a(n) = 21*a(n-1) - 165*a(n-2) + 715*a(n-3) - 1980*a(n-4) + 3762*a(n-5) - 5082*a(n-6) + 4950*a(n-7) - 3465*a(n-8) + 1705*a(n-9) - 561*a(n-10) + 111*a(n-11) - 10*a(n-12) for n > 11.

%F G.f.: (9*x^11 + 10140*x^10 + 477332*x^9 + 4504245*x^8 + 12648018*x^7 + 11793648*x^6 + 3241104*x^5 + 23538*x^4 - 37875*x^3 - 948*x^2 - 12*x + 1)/((x - 1)^11*(10*x - 1)). (End)

%t lst={}; Do[AppendTo[lst,10^n-n^10],{n,0,5!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 15 2009 *)

%t Table[10^n-n^10,{n,0,20}] (* _Harvey P. Dale_, Apr 22 2018 *)

%o (Magma) [10^n-n^10: n in [0..20]]; // _Vincenzo Librandi_, Jun 30 2011

%Y Cf. A024012, A024026, A058794, A024040, A024054, A024068, A024082, A024096, A024110. - _Vladimir Joseph Stephan Orlovsky_, Jan 15 2009

%K sign,easy

%O 0,2

%A _N. J. A. Sloane_