login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 8^n - n^5.
2

%I #13 Nov 12 2022 20:07:31

%S 1,7,32,269,3072,29643,254368,2080345,16744448,134158679,1073641824,

%T 8589773541,68719227904,549755442595,4398045973280,35184371329457,

%U 281474975662080,2251799812265391,18014398507592416,144115188073379773,1152921504603646976

%N a(n) = 8^n - n^5.

%H Vincenzo Librandi, <a href="/A024093/b024093.txt">Table of n, a(n) for n = 0..400</a>

%F From _Chai Wah Wu_, Jul 10 2016: (Start)

%F a(n) = 14*a(n-1) - 63*a(n-2) + 140*a(n-3) - 175*a(n-4) + 126*a(n-5) - 49*a(n-6) + 8*a(n-7) for n > 6.

%F G.f.: (-9*x^6 - 201*x^5 - 517*x^4 - 122*x^3 + 3*x^2 + 7*x - 1)/((x - 1)^6*(8*x - 1)). (End)

%t CoefficientList[Series[(-9*x^6 - 201*x^5 - 517*x^4 - 122*x^3 + 3*x^2 + 7*x - 1)/((x - 1)^6*(8*x - 1)), {x, 0, 20}], x] (* _Wesley Ivan Hurt_, Nov 12 2022 *)

%o (Magma) [8^n-n^5: n in [0..20]]; // _Vincenzo Librandi_, Jul 05 2011

%K nonn

%O 0,2

%A _N. J. A. Sloane_