Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 13 2023 14:55:58
%S 1,7,60,503,4080,32743,262108,2097103,16777152,134217647,1073741724,
%T 8589934471,68719476592,549755813719,4398046510908,35184372088607,
%U 281474976710400,2251799813684959,18014398509481660
%N 8^n-n^2.
%H Vincenzo Librandi, <a href="/A024090/b024090.txt">Table of n, a(n) for n = 0..400</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (11,-27,25,-8).
%F G.f.: (1-4*x+10*x^2+7*x^3)/((1-8*x)*(1-x)^3). - _Vincenzo Librandi_, Oct 06 2014
%F a(n) = 11*a(n-1) -27*a(n-2) +25*a(n-3) -8*a(n-4) for n>3. - _Vincenzo Librandi_, Oct 06 2014
%F a(n) = A001018(n) - A000290(n). - _Michel Marcus_, Oct 06 2014
%t Table[8^n - n^2, {n, 0, 25}] (* or *) CoefficientList[Series[(1 - 4 x + 10 x^2 + 7 x^3)/((1 - 8 x) (1 - x)^3), {x, 0, 30}], x] (* _Vincenzo Librandi_, Oct 06 2014 *)
%t LinearRecurrence[{11,-27,25,-8},{1,7,60,503},30] (* _Harvey P. Dale_, Feb 13 2023 *)
%o (Magma) [8^n-n^2: n in [0..20]]; // _Vincenzo Librandi_, Jul 05 2011
%Y Cf. similar sequences listed in A024025.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.