login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024048 a(n) = 4^n - n^12. 1
1, 3, -4080, -531377, -16776960, -244139601, -2176778240, -13841270817, -68719411200, -282429274337, -999998951424, -3138424182417, -8916083671040, -23298018013617, -56693643939840, -129745264148801, -281470681743360, -582605057360577, -1156762661949440 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..500

Index entries for linear recurrences with constant coefficients, signature (17,-130,598,-1859,4147,-6864,8580,-8151,5863,-3146,1222,-325,53,-4).

FORMULA

From Colin Barker, Jan 30 2018: (Start)

G.f.: (1 - 14*x - 4001*x^2 - 462225*x^3 - 8273886*x^4 - 25569021*x^5 + 102763326*x^6 + 487535142*x^7 + 583731957*x^8 + 255085496*x^9 + 40272755*x^10 + 1908923*x^11 + 16344*x^12 + 3*x^13) / ((1 - x)^13*(1 - 4*x)).

a(n) = 17*a(n-1) - 130*a(n-2) + 598*a(n-3) - 1859*a(n-4) + 4147*a(n-5) - 6864*a(n-6) + 8580*a(n-7) - 8151*a(n-8) + 5863*a(n-9) - 3146*a(n-10) + 1222*a(n-11) - 325*a(n-12) + 53*a(n-13) - 4*a(n-14) for n>13.

(End)

PROG

(MAGMA) [4^n-n^12: n in [0..30]]; // Vincenzo Librandi, Jul 02 2011

(PARI) Vec((1 - 14*x - 4001*x^2 - 462225*x^3 - 8273886*x^4 - 25569021*x^5 + 102763326*x^6 + 487535142*x^7 + 583731957*x^8 + 255085496*x^9 + 40272755*x^10 + 1908923*x^11 + 16344*x^12 + 3*x^13) / ((1 - x)^13*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 30 2018

CROSSREFS

Sequence in context: A089895 A116213 A136544 * A094319 A229766 A003166

Adjacent sequences:  A024045 A024046 A024047 * A024049 A024050 A024051

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 03:48 EDT 2020. Contains 333136 sequences. (Running on oeis4.)