login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Theta series of A_15 lattice.
1

%I #14 Jun 12 2019 20:49:33

%S 1,240,10920,163520,1075860,4464096,14909440,40080000,96643950,

%T 204728400,412819680,754303680,1350075720,2236728480,3673313280,

%U 5666507392,8760753540,12779981760,18827053960,26351976000,37332319752,50483661760,69411962880,91160284800,122167955000

%N Theta series of A_15 lattice.

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110.

%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A15.html">Home page for this lattice</a>

%e 1 + 240*q^2 + 10920*q^4 + 163520*q^6 + 1075860*q^8 + 4464096*q^10 + 14909440*q^12 + 40080000*q^14 + O(q^15)

%t terms = 20; f[q_] = LatticeData["A15", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q], {q, 0, 2 terms}]; CoefficientList[s, q^2][[1 ;; terms]] // Round (* _Jean-François Alcover_, Jul 07 2017 *)

%Y Cf. A023927 (dual).

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from Robert.Harley(AT)inria.fr, see A023902.

%E More terms from _Sean A. Irvine_, Jun 12 2019