Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 08 2022 08:44:48
%S 1,1,5,32,298,3531,51609,894834,17980052,410817517,10518031721,
%T 298207687029,9273094072138,313757506696967,11474218056441581,
%U 450961669608632160,18954582520550896213,848384721904740036422,40285256621556957160307,2022695276960566890383148
%N Number of partitions in expanding space.
%C Also partitions of n into 1 sort of 1, 4 sorts of 2, 27 sorts of 3, ..., k^k sorts of k. - _Joerg Arndt_, Feb 04 2015
%H Alois P. Heinz, <a href="/A023880/b023880.txt">Table of n, a(n) for n = 0..300</a>
%F G.f.: 1 / Product_{k>=1} (1 - x^k)^(k^k).
%F a(n) ~ n^n * (1 + exp(-1)/n + (exp(-1)/2 + 5*exp(-2))/n^2). - _Vaclav Kotesovec_, Mar 14 2015
%F a(n) = (1/n)*Sum_{k=1..n} A283498(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 11 2017
%p with(numtheory):
%p a:= proc(n) option remember; `if`(n=0, 1, add(
%p add(d*d^d, d=divisors(j)) *a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..30); # _Alois P. Heinz_, Feb 04 2015
%t nmax=20; CoefficientList[Series[Product[1/(1-x^k)^(k^k),{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Mar 14 2015 *)
%o (PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^(k^k))) \\ _G. C. Greubel_, Oct 31 2018
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^(k^k): k in [1..m]]) )); // _G. C. Greubel_, Oct 31 2018
%o (SageMath) # uses[EulerTransform from A166861]
%o b = EulerTransform(lambda n: n^n)
%o print([b(n) for n in range(20)]) # _Peter Luschny_, Nov 11 2020
%K nonn
%O 0,3
%A _Olivier Gérard_