login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Product_{k>=1} (1 - x^k)^(-k^7).
5

%I #44 Sep 08 2022 08:44:48

%S 1,1,129,2316,26956,385017,5512443,70223666,866470849,10628564312,

%T 126832407040,1469751196093,16694372607012,186350644088784,

%U 2042610304126944,22007441766651756,233482509248479425,2441727926157182541,25187101530316996950,256456174925807404269

%N G.f.: Product_{k>=1} (1 - x^k)^(-k^7).

%H Alois P. Heinz, <a href="/A023876/b023876.txt">Table of n, a(n) for n = 0..1000</a>

%H G. Almkvist, <a href="https://projecteuclid.org/euclid.em/1047674152">Asymptotic formulas and generalized Dedekind sums</a>, Exper. Math., 7 (No. 4, 1998), pp. 343-359.

%H Vaclav Kotesovec, <a href="/A023876/a023876.jpg">Graph - The asymptotic ratio for 10000 terms</a>

%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.

%F a(n) ~ (35*Zeta(9))^(119/2160) * exp((3/2)^(20/9) * n^(8/9) * (35*Zeta(9))^(1/9) + Zeta'(-7)) / (2^(247/2160) * 3^(961/1080) * sqrt(Pi) * n^(1199/2160)), where Zeta(9) = A013667 = 1.0020083928260822144..., Zeta'(-7) = ((gamma + log(2*Pi) - 363/140)/30 - 315*Zeta'(8)/Pi^8)/8 = -0.00072864268015924... . - _Vaclav Kotesovec_, Feb 27 2015

%p with(numtheory):

%p a:= proc(n) option remember; `if`(n=0, 1,

%p add(add(d*d^7, d=divisors(j)) *a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Nov 02 2012

%t max = 19; Series[ Product[1/(1 - x^k)^k^7, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x] & (* _Jean-François Alcover_, Mar 05 2013 *)

%o (PARI) m=20; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^7)) \\ _G. C. Greubel_, Oct 31 2018

%o (Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^7: k in [1..m]]) )); // _G. C. Greubel_, Oct 31 2018

%Y Column k=7 of A144048.

%K nonn

%O 0,3

%A _Olivier Gérard_

%E Definition corrected by _Franklin T. Adams-Watters_ and _R. J. Mathar_, Dec 04 2006