Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Feb 17 2022 16:04:54
%S 1,1,6,63,1140,30730,1185072,66363206,7150843144,3829117403448
%N Number of binary operations on an n-set that are commutative and associative; labeled commutative semigroups.
%H Eric Postpischil <a href="http://groups.google.com/groups?&hl=en&lr=&ie=UTF-8&selm=11802%40shlump.nac.dec.com&rnum=2">Posting to sci.math newsgroup, May 21 1990</a>
%H Amit Sehgal, Sunil Kumar, Sarita, Yashpal, <a href="https://doi.org/10.1088/1742-6596/1000/1/012063">Commutative Associative Binary Operations on a Set with Five Elements</a>, J. Phys.: Conf. Ser. (2018) 1000 012063
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Semigroup.html">Semigroup.</a>
%H <a href="/index/Se#semigroups">Index entries for sequences related to semigroups</a>
%F a(n) + A079192(n) + A079195(n) + A079198(n) = A002489(n).
%F a(n) = Sum_{k>=1} A079201(n,k)*A079210(n,k). - _Andrew Howroyd_, Jan 26 2022
%Y Row sums of A058167.
%Y Cf. A001423, A001426 (isomorphism classes), A023813 (commutative only), A023814 (associative only), A027851.
%Y Cf. A002489, A079192, A079195, A079198, A079201, A079210.
%K nonn,hard,more
%O 0,3
%A Lyle Ramshaw (ramshaw(AT)pa.dec.com)
%E a(8) from _Andrew Howroyd_, Jan 26 2022
%E a(9) from _Andrew Howroyd_, Feb 14 2022