login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of associative binary operations on an n-set; number of labeled semigroups.
17

%I #29 Jan 14 2024 06:53:39

%S 1,1,8,113,3492,183732,17061118,7743056064,148195347518186,

%T 38447365355811944462

%N Number of associative binary operations on an n-set; number of labeled semigroups.

%H Alex Bailey, Martin Finn-Sell, and Robert Snocken, <a href="http://arxiv.org/abs/1409.2444">Subsemigroup, ideal and congruence growth of free semigroups</a>, arXiv preprint arXiv:1409.2444 [math.GR], 2014.

%H A. Distler and T. Kelsey, <a href="http://arxiv.org/abs/1301.6023">The semigroups of order 9 and their automorphism groups</a>, arXiv preprint arXiv:1301.6023 [math.CO], 2013.

%H C. Noebauer, <a href="http://www.algebra.uni-linz.ac.at/~noebsi/">Home page</a> [broken link]

%H C. Noebauer, <a href="ftp://www.algebra.uni-linz.ac.at/pub/noebauer/smallrings.ps.gz">The Numbers of Small Rings</a>

%H C. Noebauer, <a href="ftp://www.algebra.uni-linz.ac.at/pub/noebauer/thesis.ps.gz">Thesis on the enumeration of near-rings</a>

%H Eric Postpischil <a href="http://groups.google.com/groups?&amp;hl=en&amp;lr=&amp;ie=UTF-8&amp;selm=11802%40shlump.nac.dec.com&amp;rnum=2">Posting to sci.math newsgroup, May 21 1990</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Semigroup.html">Semigroup.</a>

%H <a href="/index/Se#semigroups">Index entries for sequences related to semigroups</a>

%Y Cf. A001423, A001426, A023813, A023815, A027851.

%Y a(n) + A079172(n) = A002489(n).

%K nonn,more

%O 0,3

%A Lyle Ramshaw (ramshaw(AT)pa.dec.com)

%E a(8), a(9) from Distler and Kelsey (2013). - _N. J. A. Sloane_, Feb 19 2013